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Abstract. A brief review is given of the current understanding of the electronic structure, transport
properties and the nature of the electronic states in disordered systems. A simple explanation for the
observed exponential behaviour in the density of states (Urbach tails) based on short-range Gaussian
fluctuations is presented. The theory of Anderson localization in a disordered system is reviewed.
Basic concepts, and the physics underlying the effects of weak localization, are discussed. The
scaling as well as the self-consistent theory of localization are briefly reviewed. It is then argued
that the problem of localization in a random potential within the so-called ladder approximation is
formally equivalent to the problem of finding a bound state in a shallow potential well. Therefore
all states are exponentially localized ind = 1 andd = 2. The fractal nature of the states is also
discussed. Scaling properties in highly anisotropic systems are also discussed. A brief presentation
of the recently observed metal-to-insulator transition ind = 2 is given and, finally, a few remarks
about interaction effects in disordered systems are presented.

1. Introduction

In a simple perfect crystal, all atoms are identical and arranged periodically in space.
This periodic arrangement constitutes perfect, long-range translation order. An immediate
consequence of this perfect periodicity is that there are universal features in the electronic
structure of crystals. The most important of these are energy bands separated by gaps, crystal
momentum as a good quantum number and the fact that states are plane waves modulated by the
lattice periodicity. These universal features form the basis of Bloch’s theory of electron states
in a perfect periodic lattice. Although this basic theory of perfect crystals with non-interacting
particles can explain only a few observable properties of solids, it provides the conceptual
foundations for most of solid-state physics, if it is supplemented by a kinetic theory in which
the electrons interact with one another and with imperfections of different types in the lattice.
Disordered materials lack the periodicity of the crystals. Accordingly, one might expect that all
those universal features of crystalline materials dependent upon their translational symmetry
would disappear as well. However, there might possibly also exist corresponding universal
features in the electronic structure of disordered materials. If so what are they? Are they any
different than those of crystalline materials?

It was the publication of Anderson’s classic paper ‘Absence of diffusion in certain random
lattices’ in 1958 [1], which treated the motion of an electron in a random potential due to the
disorder outside the framework of Bloch’s theory, that revolutionized the field of disordered
systems over the last 30 years. This is known as the Anderson localization problem. If the
disorder is weak, the wavefunction will look like a plane wave on a short length scale and,
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of course, it will show the effects of scattering by the random potential on a long length
scale. The distance over which the phase of the wavefunction deviates appreciably from that
of the plane wave is called the mean free path. As the disorder is made stronger, amplitude
fluctuations at scales considerably larger than that of atomic size start to appear and eventually
eigenstates whose amplitudes decay exponentially away from a centre, called localized states,
are created. Physically, one expects states to become localized when the mean free path
becomes comparable to the wavelength. The central question in the Anderson localization
problem is precisely how the localized states evolve from extended states as the disorder
increases. The study of Anderson localization [2–4] over the last 30 years has led to new
concepts such as wavefunction localization, mobility edges and fractal wavefunctions, and to
a different way of describing materials. It also marked the first significant departure from the
philosophy (Bloch’s theorem and perturbation theory) that had dominated solid-state physics
until then. These new concepts and ideas have expanded into many fields beyond the electronic
structure of matter and research into the physics of disordered systems has seen a considerable
growth in the last decade.

The approach taken here is to review the universal features of perfect and imperfect
crystals, observing the effects of increasing disorder on the electronic structure. We then
discuss the nature of disordered materials and present a simple model that illustrates the main
characteristics of the electronic structure. The focus is on the universal features of these
models and their consequences for amorphous semiconductors. Simple arguments are given
showing that continuous bands of extended states with tails of localized states associated
with fluctuations within the disordered material can always be expected. The significance of
the disorder-induced localization transition will be discussed. At the mobility-edge energy,
the character of the wavefunctions changes abruptly even though the eigenvalue spectrum
is continuous. Exactly at the mobility edge the electron states are fractal [5] in nature. The
probability distribution of the conductance at the critical point [6] is of fundamental importance.
The question of the dimensionality dependence of the Anderson transition and the energy
dependence of the tails in the density of states (Urbach tails) will also be reviewed. We
shall apply the general theoretical results to binary alloys, quasi-periodic systems and model
systems with different types of disorder. We shall also discuss the localization behaviour of
the Anderson model and the scaling properties of highly anisotropic disordered systems [7].
Experimental evidence [8] will also be given that supports the localization transition ind = 2
strongly interacting disordered systems. In conclusion, we shall summarize the present state
of the field and indicate some unsolved problems.

2. Disordered crystals

Let us consider what happens if we have a finite concentration of randomly distributed
impurities of equal potential strength (positional disorder). Here, the disorder is due to the
spatial distribution of the scatterers. One can also have a disordered system if a particle
moves on a regular lattice, but the energy level at every lattice point is randomly distributed
(substitutional disorder). The disorder will affect the density of states (DOS) as well as the
wavefunctions. In general, the wavefunction for a perfectly periodic potential can be written
as

9(r) = A(r)eiφ(r) (1)

where the amplitudeA(r) is a periodic function ofr and the phaseφ(r) exhibits perfect
phase coherence and is given byφ(r) = k · r. For a disordered system both the phase and
the amplitude of the wavefunction will be affected. When the disorder is weak, it is usually
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assumed that the amplitude is essentially unaffected, while phase incoherence appears

〈exp[i(φ(r)− φ(0))]〉 ∼ e−|r|/` (2)

i.e. the memory of the value of the phase at a given pointr is lost after the wave propagates
a distance greater than or equal to a characteristic length, called the phase coherence length,
which is of the same order of magnitude as the mean free path`. The scattering of the particles
off the impurities implies a finite collision timeτ and thereby a finite mean free path` = vFτ ,
wherevF is the appropriate Fermi velocity. If the disorder is strong it will affect not only the
phase but the amplitude as well. The wavefunctions then exhibit strong amplitude fluctuations
of various spatial extents. It is possible to have even stronger disorder such thatA(r)→ 0 as
r →∞ (usually in an exponential way). We shall first discuss the effects of the disorder on
the DOS, then on the wavefunctions and finally on the conductance.

2.1. Effects on the density of states

In the case of the perfect crystal the corresponding one electron energiesE = En(k) fall
into continuous bands of allowed levels separated by forbidden gaps. The energyEn(k) is a
continuous analytic function ofk within each band. There are well-defined band edges which
correspond to the absolute minimum or maximum ofE as a function ofk for each band.
The DOS has square-root singularities at these edges. For the case of a single impurity in an
otherwise perfect crystal, the sharp band edges as well as the square-root singularities associated
with saddlepoints within the band remain. The new feature in the DOS is the introduction of
impurity states in the gap which can broaden into bands if the concentration of the localized
impurities is increased. The other effect that the finite concentration of impurities has on the
DOS is that of rounding off the square-root singularities in the band. As the concentration of
the localized impurities still increases one might question the whole band picture. However,
there are some experimental observations which suggest that the main features of the band
picture must still be preserved. In particular, ordinary window glass [9], which is a disordered
system, is transparent to visible light and hence must have a band gap of several eV, otherwise
the photons would be absorbed and it would appear opaque. The reason why the band picture
is still valid is that short-range order is still present in disordered systems. This local order
still gives rise to bands and gaps reflecting the energy-level structure of a corresponding small
molecule. However, the absence of long-range order has the effect of smearing out the band
edge into tails. In the next section we shall study these tails which are commonly called Urbach
tails. As will be discussed later, the electron states in the band tails are not the same as those
within the band. The tail states are localized and hence electrons in those states have a very
low mobility compared with those in the bands. As we shall see from the next section, the tail
states are, in general, associated with fluctuations.

2.2. Urbach tails

It is widely accepted that the introduction of disorder caused tails to appear at the band edges
in the DOS. In a systematic and thorough study, Urbach documented [10] the existence of
exponential tails in the optical adsorption of ionic crystals in 1953. Since Urbach, such
exponential tails have been found in a wide range of materials, both in the optical absorption
and in the DOS of individual bands [11]. The rather general character of the exponential
tails in the DOS suggests a quasi-universal mechanism that bypasses the complexity of real
materials. In the quest to uncover such possible underlying quasi-universality we have reached
the conclusion that the behaviour of the DOS near the band edge can be easily understood [12]
from the following picture.
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An electron moving in a disordered system can be described by a Hamiltonian of the form
H = H0 + H1 whereH0 is a non-random part which is assumed soluble andH1 is random
with 〈H1〉 = 0. For a typical disordered systemH0 allows us to obtain the unperturbed DOS
ρ0(E) and the unperturbed Green’s functionG0(E);G0(E) can be expressed as an integral of
ρ0(E

′)/(E −E′). The random partH1 can be expressed in terms of some matrix elementsεi ,
which are random variables possessing probability distributionp(εi). To a first approximation,
all we need to know fromp(εi) is its variancew2 and its form in the tail. In most cases, due to
the many independent sources of disorder, one expects the distributionp(εi) to be Gaussian

p(εi) = 1√
2πw

exp
(−ε2

i /2w
2
)
. (3)

Note also that lattice oscillations produce fluctuating time-dependent local potentials with
a Gaussian distribution and with an extent of atomic size. For not so low temperatureT

and for fast processes, such as optical absorption, the phonon-induced fluctuations behave
as static and, consequently, they give rise to another independent contribution of the form
given by equation (3). The standard deviationwT of this contribution can be obtained if the
electron–phonon interaction is known. Therefore, in the presence of both Gaussian static
disorder and phonon-induced fluctuations, one obtains a local contribution of the form given
by equation (3) with a total variancew2 given by the sum of the static disorder variancew2

S
and the thermal variancew2

T. The above discussion supports the claim that the tails of the
probability distribution of the local fluctuating potential exhibit, in general, a Gaussian form,
which is characterized by a single parameterw2.

The behaviour of the DOS of a disordered system near the gap can be deduced from the
unperturbedρ0(E)with the help of the coherent potential approximation (CPA) [13]. The CPA
is conceptually simple: it replaces the random matrix elementsεi by appropriately chosen non-
random complex effective matrix elements6(E). The criterion which allows us to choose
6(E) is that the actual fluctuations around6(E) produce no scattering on the average. This
conceptually simple condition leads to a rather complicated set of equations involvingG0(E),
from which the conductivity,σ(E), is determined. In the weak scattering case (w2 small) the
CPA reduces to second-order perturbation theory. It is worth noting that the CPA becomes
exact in the limit where the eigenstates are bound around a single large isolated potential
fluctuation; the CPA is also very satisfactory for states extending over a large number of sites.
It is only in the intermediate case, where the eigenstates are trapped in a cluster of a few sites,
that the CPA fails. CPA (or second-order perturbation theory for smallw2) shows that the
fluctuating local potentialεi will produce an almost rigid shift of both the valence and the
conduction bands towards the gap by an amount proportional tow2. Thus the gap is reduced
by an amount proportional tow2.

In addition to the almost rigid shift of the DOS both the valence and the conduction bands
develop tails towards the gap (see figure 1). The near tails are dominated by states trapped
in clusters of atomic sites. These cluster-trapped states under normal conditions dominate
over a very narrow range of energies. The deeper tails are usually dominated by single-site
bound states. For a Gaussian probability distribution the single-site bound states produce an
exponential tail in the DOS, which is seen experimentally [11]

ρ(E) ∼ e−E/E0. (4)

Equation (4) is an immediate consequence of the fact that the binding energyE in a single
potential well of depthε is approximately [12] a linear function ofε2, over a wide range of
intermediate values ofε:

E ∼ c1ε
2 + b2. (5)
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Figure 1. (a) One-electron DOS in a random potential.
For weak disorder, there is an Urbach tail of localized
states below the positive-energy square-root continuum
of extended states, which is shifted downwards slightly
by the disorder. (b) As the disorder is increased, the
mobility edge eventually moves into the positive-energy
regime.

Combining equations (3) and (5) one immediately obtains equation (4) withE0 = 2c1w
2.

This exponential behaviour of the DOS could span more than five orders of magnitude.
Moreover, the calculated values ofc1 together with the estimates ofw yield values ofE0

of the order of 50 meV or less, in good quantitative agreement with experiment [11]. Finally,
much deeper into the tail, one obtains [12], as one should, a gradual change in the behaviour
of the DOS which reflects the details of the probability distribution for the disorder.

The simple physical model discussed above gives a clear physical insight into and a
good quantitative account of the Urbach tail. Nevertheless, some of the assumptions of
the model were untested; in particular, the correlation in the random potential was not
considered explicitly. More sophisticated saddlepoint (instanton) evaluation of the replica-
functional-integral representation of the one-electron propagator and the Feynman path-
integral formulation provides a careful treatment of DOS in a correlated Gaussian random
potential [14]. The primary conclusion of this type of work is that the shape of Urbach tails in
disordered materials provides a sensitive measure of the microscopic spatial autocorrelations in
the random potential. The observed linearity of Urbach tails in a variety of materials suggests
strong short-range order on the scale of the interatomic distance but correlations which decay
more rapidly than exponentially on longer length scales.

2.3. Localization

The interference effects, which on a short length scale are responsible for the fluctuations
in the amplitude of the eigenfunction and the resulting reduction of the conductivity, may,
in addition, force the eigenfunction to decay to zero for very large distances. This decay,
for an infinite system, implies absence of propagation and zero value for the conductivity
(at T = 0) and the diffusion coefficient. It turns out that for one-dimensional systems, all
eigenstatesψ(x) are localized (which by definition means they are decaying to zero for large
distances) no matter how weak the disorder is (some pathological exceptions do exist) [13].
The decay is exponential and is characterized by the localization length,Lc, which is defined
through the logarithmic average of|ψ(x)|. Because the probability distribution of|ψ(x)|
has long tails, other averages of|ψ(x)| would give different values of the decay length, e.g.
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〈|ψ(x)|〉 ∼ exp(−|x|/2Lc).
It is widely believed [2,3], although no rigorous proof exists, that the critical dimensionality

for the localization problem isd = 2 in the absence of magnetic scattering or external magnetic
fields. Ford < 2, any amount of disorder is enough to localize all the eigenstates (pathological
exceptions exist); ford > 2, a critical value of the disorder has to be reached before an
eigenstate becomes localized. Ford = 2, one distinguishes different universality classes. The
main one, characterized by time invariance and absence of spin–orbit coupling, is believed to
have all eigenstates localized no matter how weak the disorder is, as in the 1D case. In the
presence of spin–orbit coupling or external magnetic field [3], a critical value of the disorder
is needed in order to localize an eigenstate, as in the 3D case.

The localization problem in 1D systems has been studied extensively using various
methods [3, 13]. Exact analytical results and very accurate numerical data are available
concerning the energy and disorder dependence of the localization length, and the probability
distribution of various quantities of interest. Of particular interest is the transmission
coefficient,T , over a disordered segment of lengthL. The logarithmic average ofT behaves
as exp(−2L/Lc) for L/Lc � 1, while other averages exhibit a different behaviour (e.g.
〈T −1〉 = 12[1 + exp(4L/Lc)], while 〈T 〉 ' (Lc/2L)3/2 exp(−L/2Lc). This is a result of
the long tails in the probability distribution ofT due to very sharp resonances inT versusE
(whereT approaches almost unity). These resonances become exact localized eigenstates in
the limit asL→∞.

2.4. Relation between conductance and the transmission coefficient

The interest in the transmission coefficientT stems from its connection to the resistance,R,
which is the inverse of the conductance,G, of the linear segment. Landauer [15] has shown
that

G = e2

π}
T

(1− T ) (6)

while Economou and Soukoulis [16] on the basis of the Kubo formula obtained

G = e2

π}
T . (7)

The difference in the two expressions forG, and therefore forR, appears in the case of
an almost perfect conductor (L � Lc), where the first expression gives for the resistance
R = 1/G

R = π}
e2

(
e2L/Lc − 1

) ' π}
e2

2L

Lc
(8)

which is the classical result (taking into account thatLc = 4`, where` is the mean free
path), while the Economou–Soukoulis formula tends toπ}/e2. The reason for this difference
is that the current–field relation is not local for ballistic transport, i.e. whenL � Lc, and,
as a result, the resistance of the segment depends on how it is connected to the circuit and
on what is happening outside the segment. Because the Economou–Soukoulis version of
the Landauer formula, equation (7), predicted a finite resistance for a ‘perfect’ conductor,
several researchers [17] questioned the validity of equation (7) and some, including Landauer
himself [18], rejected it. It is now well understood that for two-probe measurementsG is best
described by equation (7). Recent experiments [19] in quantum lines have shown plateaus
in the conductance at values equal tone2/π} (n =1, 2, . . . , n) corresponding to 1, 2, . . . , n
one-dimensional channels reaching the saturation valuee2/π}.
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Quasi-1D systems, of parallel coupled 1D channels, have also been studied extensively
because they describe, on the one hand, the important cases of wires or quantum lines, and on the
other hand, allow, through a scaling behaviour, reliable numerical studies of higher-dimensional
systems. It is also worth mentioning 1D quasi-periodic incommensurable systems (e.g. simple
tight-binding models with diagonal matrix elementsεn = ε0 cos(πσn)whereσ is an irrational
number) which exhibit a behaviour intermediate between periodic and random systems [20]. In
particular, the quasi-periodic 1D system allows either extended (whenε0/V < 2) or localized
eigenstates (whenε0/V > 2), whereV is the nearest-neighbour transfer-matrix element.

2.5. Scaling studies of the Anderson localization

Another approach, the so-called scaling approach, starts with the observation that wave
propagation in a simple tight-binding model must depend on a single dimensionless parameter,
namely the ratio,V/δε, of the transfer-matrix elementV to the level mismatchδε. The latter
is proportional to the standard deviation of the probability distribution of each diagonal matrix
element,εn. Next, one mentally divides the system into blocks (e.g. cubes) of ever-increasing
linear dimensionL. The question that arises is whether one can still define for each block two
quantities,V (L) andδ(L) such that the ratioV (L)/δ(L) fully characterizes the localization
properties of the system. Thouless [21] argues thatδ(L) is essentially the level spacing, i.e.
δ(L) = ρ−1L−d , whereρ is the DOS per unit volume, whileV (L) is the average change in the
energy levels when the boundary conditions in a block change from periodic to antiperiodic.
Furthermore, one can then show thatV (L) = }/τ , whereτ is the time it takes for a particle to
diffuse from the centre of the block to its boundary:τ = (L/2)2/D, whereD is the diffusion
coefficient. Putting everything together and remembering Einstein’s relationσ = 2e2ρD

(whereσ is the conductivity) we obtain that the assumed single dimensionless quantity,
which fully characterizes the localization properties, is the dimensionless DC conductance
g = (π}/e2)G.

Theβ-function defined by

β = d logg/d logL (9)

which, if positive (negative) forL > L0, would imply thatG(L) → ∞ (zero) asL → ∞,
i.e. that the eigenstates are extended (localized). Abrahamset al [22] argued thatβ must
necessarily be a function ofg only (since there is a single parameter, namelyg, which controls
localization); furthermore, they assumed thatβ was a monotonic function ofg (an assumption
that was proved wrong in the presence of spin–orbit coupling). This assumed monotonicity
together with the limiting expressionsg ∼ exp(−2L/Lc) (wheng → 0) andg ∼ σLd−2

(wheng → ∞) leads to aβ-function versus lng as shown in figure 2 ford = 1, 2, 3. For
d = 1, 2 β is always less than zero. Hence by increasingL, g decreases,β becomes more
negative and thus one slides down towards strong localization asL→∞

In the 3D case, one has to distinguish two possibilities.

(a) g > gc (gc is roughly estimated to be 0.024 [23]; values in the literature range from 0.01
right up to 0.50): thenβ is positive,g increases with increasingL, which leads to a further
increase inβ and thus we move upwards along theβ curve towards extended states and
classical transport behaviour.

(b) g < gc: in this caseβ is negative and hence by increasingL we move towards strong
localization.
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Figure 2. The qualitative behaviour ofβ(g) = d logg/d logL for one, two and three dimensions.

2.6. Self-consistent theory of localization

Another approach [2–4] to the localization problem starts with the equation

δσ = σ − σ0 = − e
2

π}
2

(2π)d

∫
dk

1

(−iω/D0) + k2
(10)

for the correction to the classical expression,σ0, for the conductivity which, as the frequency
ω → 0, reduces to the Drude formula for the conductivityσ0 = ne2τ/m. Equation (10) is
valid for largeg (near the classical regime) and is derived [2,4] by summing a subset of infinite
terms in the perturbation expansion forσ (these terms correspond to the so-called maximally
crossed diagrams). This equation can be reduced to a self-consistent one either forσ (or
equivalently for the diffusion coefficientD) by replacingD0 inside the integral byD(ω). We
then have

D(ω) = D0(ω)− 1

(2π)dπ}ρ

∫
dk

1

(−iω/D(ω)) + k2
. (11)

Note that in the localized regimeD(ω) → 0, and the ratio iD(ω)/ω → L2
c asω → 0.

Hence, equation (11) allows us to obtain the localization length (in the localized regime), the
correction to the conductivity (in the extended regime), and theβ versus lng curve over the
whole range.

2.7. Potential well analogy

It has been noticed by Economou and Soukoulis [24] that the structure of the maximally crossed
diagrams as well as the form of equation (11) are mathematically identical to corresponding
quantities in the simple problem of a particle being scattered or trapped by a local potential
well. Thus, the localization problem (or at least the self-consistent approximation to it) can
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be mapped to that of a potential well (PW). The extent of the equivalent PW is proportional
to the mean free path,̀, and its depth is proportional toσ−1

0 `−d . Thus, the recipe for the
potential well analogy is the following. For each particular energy and disorder determine the
mean free path̀ and the classical conductivityσ0 (the best way to do that is using the CPA).
In terms ofσ0 and` construct the equivalent potential well. If this potential well sustains as a
ground state a bound state with decay lengthLc, then the eigenstates of the disordered system
at this particular energy and disorder are localized with localization lengthLc. If the PW has
no bound states, but gives rise to a state with scattering lengthξ then the eigenstates of the
disordered system at this energy and disorder are extended but fluctuating up to a maximum
length scale equal toξ . Furthermore, the bound or scattering eigenstate in the equivalent PW
allows us to obtain the reduction in the conductivityσ0 due to the weak or strong localization
effects, i.e. to obtainσ(L). Using the well-known results for the decay length of the lowest
bound state in a PW of depthV0 and radiusR (Lc ∼ V −1

0 R−1 in 1D;Lc ∼ R exp(}2/mV0R
2)

in 2D; Lc ∼ RV0/(V − V0) for V > V0 = π2}2/8mR2 in 3D) we obtain that all states are
localized in 1D and 2D withLc ∼ σ0 ∼ ` andLc ∼ ` exp(π2}σ0/e

2), respectively. In 3D,
localization appears only whenσ−1

0 `−1 exceeds a critical value, i.e. whenS`2 6 C whereS is
the area of the surface of constant energy ink-space and the universal constantC is estimated
to be equal to 8.96. For isotopic systemsS = 4πk2 and the condition for localization reduces
to the well-known Ioffe–Regel conditionk` 6 (C/4π)1/2 ' 0.84. In view of the fact that
bothLc andξ ∼ (V −V0)

−1 as|V −V0| → 0 for a PW, it follows thatLc andξ blow up with
a critical component equal to unity.

The potential-well-analogy theory permits explicit calculations of different properties such
as localization lengths, conductivities, mobility edges, etc, from quantities that can be obtained
from mean field theories such as CPA. We have demonstrated that the PW theory coupled with
the CPA is capable of producing results in quantitative agreement with independent, very
reliable numerical approaches, such as the transfer-matrix technique which will be discussed
in the next section. The advantage of the PW–CPA approach over numerical approaches is
its analytical nature which gives results, even for complicated quantities, relatively easily.
The PW–CPA approach has been applied to electronic localization with rectangular [24],
Gaussian [25] and binary [26] probability distribution, off-diagonal disorder [27], phonon
localization [28] and light localization [29] with considerable success.

2.8. Transfer-matrix techniques

The most reliable numerical technique [3,31] for studying the localization problem, calculates
the longest localization length,λM , for a quasi-1D system of coupled 1D channels arranged
either in planar geometry (a strip ofM channels for studying 2D systems) or in 3D geometry
(a wire ofM ×M channels of square cross section in order to study 3D systems). It turns
out that the quantityλM/M follows, to a reasonable accuracy, a single-parameter scaling law,
i.e. the quantityλM/M is a function of onlyLc/M or ξ/M if we are in the localized or the
extended regime, respectively, whereLc, ξ are the localization and the correlation length in
theM → ∞ limit. For 2D disordered systems (with no spin–orbit coupling and no external
magnetic field) there is a single curve in theλM/M versusLc/M plane. In most cases, for large
yet numerically realizableM ’s, M/λM versusM becomes a straight line the slope of which
determinesLc (which may be many orders of magnitude larger thanM). For 3D disordered
systems and forλM/M 6 0.6, there is the lower branch of the universal curve, the behaviour
of which is similar to that described above. ForλM/M > 0.6, there is an upper branch of
the universal curve corresponding to extended states, the behaviour of which for large yet
realizableM is the following:λM ' M2/ξ ′, whereξ ′ is proportional to correlation lengthξ .
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The quantityξ , which can be easily determined from the present numerical method, is very
important because it is directly connected [31] to the DC conductivity over the whole range of
extended states up to the mobility edge by the simple relation

σ(L) = (e2/})(α/ξ ′ + b/L) (12)

whereL is the linear dimension of the system andα andb are numerical constants (α '
0.07± 0.007 andb ' 0.05± 0.03).

It is worth pointing out that the probability distribution of the level spacing is different
for localized states (for which there is little or no level repulsion) and for extended states (for
which the level repulsion strongly reduces the low end of the probability distribution to zero).
This observation permits another numerical approach to the localization problem (based on
the level statistics) which has been used profitably in recent years [3,32].

2.9. Fractal character of eigenstates

Explicit numerical results for the eigenstates in disorderedd-dimensional systems (d = 1, 2, 3)
show very many fluctuations at various length scales. This suggests the possibility that the
eigenfunctions may be fractal objects at least between a lower and an upper length limit. Leta

be an average interatomic distance (taken as the unit of length),N the total number of atoms in
our system (so thatL = N1/d is its linear dimension). Of the various fractal dimensionalities
Dq defined,D2 is of particular interest since it is directly related to the density autocorrelation
function and to the so-called participation numberP = (∑p2

n)
−1 which is a measure of the

number of sites over which the wavefunction is appreciable;pn is the probability of finding
the electron at the siten. Numerical [5] as well as field theoretical results show that the above
equation is obeyed withD2 ' 1.7±0.3 (at the mobility edge) as long asLmin < L < Lmax.
The upper limiting lengthLmax equalsLc (in the localized regime) andξ (in the extended
regime) while it becomes infinite at the mobility edge. It is not clear what the lower limiting
length is: possible candidates are the wavelengthλ or the mean free path̀ (most probably
λ). On the other hand, the variousDq ’s are not the same, which by definition means that
the eigenstates in disordered systems are multifractal objects in the range` 6 L 6 Lc or ξ ,
assuming, of course, that the parameters are such thatλ � Lc or ξ . An interesting physical
application [33] of the fractal exponentD2 was proposed for the analysis of polaron formation
near a mobility edge. It must be pointed out that theD2 fractal exponent is related [34] to the
anomalous diffusion exponentη by η = d −D2.

2.10. Scaling in highly anisotropic systems

Most of the previous work involves isotropic systems. Recently, the problem of Anderson
localization in anisotropic systems has attracted considerable attention [7,35–37], largely due
to the fact that a large variety of materials are highly anisotropic. It was recently shown [7]
that in a highly anisotropic system of weakly coupled planes, states are localized in the
directions parallel and perpendicular to the plane at exactly the same amount of critical disorder;
this supports of the one-parameter scaling theory which excludes the possibility of having a
wavefunction that is localized in one direction and extended in the other two. However, several
issues regarding the relation between the conductances in different directions were raised. Most
importantly, the question of scaling of conductances and localization lengths was not resolved.
Although anisotropy is known not to change the universality and thus the critical behaviour of
the system, the exact form of the scaling function is expected to depend on the anisotropy in the
form of anisotropic physical parameters such as anisotropic hopping integrals or geometrical
ratios.
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Extending the scaling argument to an anisotropic system, we assume that the logarithmic
derivative,βi , of the dimensionless conductance,gi , in any direction will be a function of the
conductance in that direction as well as other directions,

βi = d loggi
d loga

= βi({gi}) (13)

wherea is an appropriate length scale. All thegi become relevant scaling parameters. All other
physical quantities, such as anisotropic hopping integrals or anisotropic geometrical shapes,
should enter only through the conductancesgi . Exactly the same argument can be applied to
the scaling function of localization length, obtained from transfer-matrix calculations with a
quasi-1D geometry of cross sectionMj ×Mk,

λi(Mj ,Mk)

ξi
= h

(
Mj

ξj
,
Mk

ξk

)
(14)

whereλi is the finite-size localization length in the directioni and ξl (l = 1, 2, 3) is the
localization length for the infinite system. The fundamental assumption in equation (14)
is that localization lengths provide the only characteristic length scale. Once the characteristic
lengths are measured in terms of the localization lengths in the corresponding directions, the
scaling behaviour of the systems within the same universality class is governed by the same
equation.

In 2D systems, equation (14) can be written as

λi(Mj )

Mj

= ξi

ξj
f

(
Mj

ξj

)
(15)

wheref (x) = h(x)/x is the scaling function for isotropic systems. The transfer-matrix
method has been used [3, 31] to calculate the finite-size localization lengthλi(Mj ) for many
Mj (i, j = 1, 2) (Mj = 24, 48, 96, 120, 150, 300) andW = 2–14 and severalt andE, for
both directions. Figure 3 shows that the raw numerical data for bothλ

‖
M andλ⊥M for different

anisotropies,t , different disorder,W , and different energies,E, follow one universal curve, if
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Figure 3. The numerically determined scaling function for the 2D anisotropic system for different
anisotropic constantst , different energiesE and disorderW . The solid line through the data is
the 2D isotropic scaling function. They-axis isξj λi(Mj )/ξiMj , while thex-axis isMj/ξj . The
indicesi andj may represent either the parallel or the perpendicular direction, respectively.
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Figure 4. The conductanceG in units of e2/h of an anisotropic systemM × N versusM for
t = 0.1 andE = 0. Notice thatG along the two directions is exactly the same. The circles and
triangles plot the propagation along the short and long directions, respectively.

properly scaled with the localization lengths in the two directions,ξ‖ andξ⊥. The solid line
through the data in figure 3 is the 2D isotropic scaling function. This is a direct confirmation
of the scaling relation, equation (15).

An important consequence of equation (15) is that at the critical point, if any, the geometric
mean of the ratio of the finite-size localization length to the cross section width is a constant.
This was indeed found [7] to be true but interpreted instead as a result of possible conformal
invariance. We point out that at the critical point, the geometric mean of the conductances
along the different directions may not be a constant. This behaviour of the conductances is
different from that ofλM/M and needs further study for its complete understanding.

To further test the scaling idea, the conductanceG in the two different directions for
an anisotropic system has been calculated [38]. The multichannel Landauer formula [16],
G = (e2/h)Tr(t†t), wheret is the transmission matrix, has been used. With anisotropic
hoppings, one should choose a geometry other than the square, such that the conductance is
the same in all the directions, and then scale up the size of the system [37]. The conductance
should remain isotropic if one-parameter scaling theory is correct [35]. This idea has been
tested in a 2D system witht = 0.1. The ratio of the two localization lengths was found
to be 10 atW = 3.6. The system of a rectangle of sizeM × N has been scaled up by a
factor of four and, from figure 4, one can clearly see that although the conductance becomes
extremely small it remains isotropic, in agreement with the predictions of the one-parameter
scaling theory [4,35]. For a square geometry and with the same parameters as in figure 4, the
conductances in the two directions would diverge rapidly as the system size scales up.

An extensive numerical study [38] of the scaling properties of highly anisotropic systems
was performed. Scaling functions of isotropic systems are recovered once the dimension of
the system in each direction is chosen to be proportional to the localization length. In the
localized regime, the ratio of the localization lengths is proportional to the square root of the
ratio of the conductivities which, in turn, is proportional to the strength of the anisotropyt

(i.e. ξ⊥/ξ‖ ∼ t). Recall that in the extended regime [4, 7] the ratio of the correlation lengths
is proportional to the ratio of the conductivities (i.e.ξ⊥/ξ‖ = σ0⊥/σ0‖ ∼ 1/t2). It was also
shown that the geometric mean of the localization lengths is a function of the geometric mean
of the conductivities. Finally, it was shown numerically that the conductances along the two
different directions of the anisotropic system are the same, provided that the dimensions of the
anisotropic system are proportional to the localization lengths in the corresponding directions.
This procedure can be easily used in other anisotropic systems.
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2.11. Metal–insulator transition in 2D disordered systems

As we have discussed above, the scaling theory of localization predicts that all the states are
localized in a disordered 2D system. Thus, for the last two years it was generally believed
that 2D disordered systems, in the absence of a magnetic field, do not undergo a metal-to-
insulator transition, even at 0 K. Experiments [39] performed some considerable time ago in
the 1980s generally confirmed the predictions of the scaling theory. However, in a series of
recent experiments Kravchenkoet al [8] reported evidence for a metal-to-insulator transition
in a 2D electron gas in zero magnetic field. The new ingredient in these recent experiments [8]
on MOSFETs is the much higher electron mobilities than in the experiments in the 1980s. The
experimental reports for the 2D metal-to-insulator transition have created a lot of excitement in
the community and both theorists and experimentalists are working hard to understand this new
unexpected behaviour of a 2D strongly interacting disordered system. Although the scaling
theory of localization has had great success over the last two decades, it now appears that
electron–electron interactions must play a very important role in 2D systems. We feel that this
is one of the most interesting and challenging problems in the field of electronic disordered
systems.

3. Summary

In this article we have reviewed some of the recent developments in the theory of non-interacting
electrons in disordered systems. Particular emphasis has been placed on the discussion of the
universal features of the electronic density of states in disordered systems. An exponential
behaviour of the DOS is exhibited over many decades. The role of the disorder is, first, to shift
the band edge by an amount proportional tow2, which is given by second-order perturbation
theory or by the CPA. Once the energies are measured relative to the CPA band edge, all
the physical quantities of interest, including DOS, are quasi-universal, provided that the
length and energy, scaled relative to disorder-dependent units of energy and length, are small.
Next, the weak-interaction regime or the interference effects of the localization theory were
presented. The interference between a closed Feynman path and its time-reversed path gives
the unexpected result thatd = 2 is the marginal dimension for localization. Another dramatic
effect of the weak localization in disordered electronic systems occurs when a magnetic
field is applied, in which case the theory predicts a negative magnetoresistance. Then, the
scaling theory of localization, the self-consistent theory of localization and the equivalence of
localization in a random potential to the existence of a bound state in a potential well were briefly
presented. The potential-well analogy (PWA) facilitates explicit calculations of the localization
lengths, conductivities, mobility edges, etc, from quantities that can be obtained from mean-
field theories, such as the CPA. It was shown that the PWA coupled with the CPA is capable of
producing results not only in qualitative agreement but also in quantitative agreement with an
independent numerical approach. The advantage of the PWA–CPA approach over numerical
approaches is that it is analytical and gives results relatively easily, even for complicated
quantities. The PWA method was applied to 3D systems by modelling the disorder using a
Gaussian, a rectangular, and a binary distribution for the random site energies. The numerical
results for the DOS exhibit the quasi-universality expected from the analytical arguments
(white-noise model). However, the trajectory in the energy-disorder plane of the mobility edge
depends on the type of probability used. It is also discussed that the electronic wavefunctions
in disordered systems are very complicated quantities. Explicit calculations have shown that
the wavefunctions have strong amplitude fluctuations of various spatial extents. In particular,
exactly at the mobility edge the wavefunctions can be characterized by fractal dimensionalities
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and in this sense they are fractal objects for all length scales, while they are fractal-like for
lengths up to the localization (correlation) length for localized (extended) states, respectively.
What we learned about the wave nature of electrons in disordered systems should enhance our
understanding of the propagation of classical waves. Finally, a few remarks are included about
the metal-to-insulator transition in strongly interacting systems.
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